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Abstract We present a compact, self-contained review of the conventional gauge theoretical
approach to gravitation based on the local Poincaré group of symmetry transformations. The
covariant field equations, Bianchi identities and conservation laws for angular momentum
and energy-momentum are obtained.
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1 Introduction

From the viewpoint of Classical physics, our spacetime is a four-dimensional differential
manifold. In special relativity, this manifold is Minkowskian spacetime M,. In general rela-
tivity, the underlying spacetime is curved so as to describe the effect of gravitation. Utiyama
(1956) [1] was the first to propose that general relativity can be seen as a gauge theory based
on the local Lorentz group SO(3, 1) in much the same manner Yang-Mills gauge theory
(1954) [2] was developed on the basis of the internal isospin gauge group SU(2). In this
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formulation, the Riemannian connection is obtained as the gravitational counterpart of the
Yang-Mills gauge fields. While SU(2) in the Yang-Mills theory is an internal symmetry
group, the Lorentz symmetry represents the local nature of spacetime rather than internal
degrees of freedom. The equivalence principle asserted by Einstein for general relativity
requires local spacetime structure be identified with Minkowski space possessing Lorentz
symmetry. In order to relate local Lorentz symmetry to curved spacetime, we need to sol-
der the local (tangent) space to the external (curved) space. The soldering tools are the so-
called tetrad fields. Utiyama regarded the tetrads as objects given a priori. Soon after, Sciama
(1962) [3] recognized that spacetime should be endowed with torsion in order to accommo-
date spinor fields. In other words, the gravitational interaction of spinning particles required
a modification of the Riemannian geometry of general relativity to be non-Riemannian; that
is, curved space with torsion. Although Sciama used the tetrad formalism for his gauge-like
handling of gravitation, his theory fell short in treating tetrad fields as gauge fields. Kib-
ble (1961) [4] made a comprehensive extension of Utiyama’s gauge theory of gravitation
by showing that local Poincaré symmetry SO(3, 1) x T (3, 1) (x represents the semi-direct
product) can generate a space with torsion as well as curvature. The gauge fields introduced
by Kibble’s scheme include the tetrads as well as the local affine connection. There has been
a variety of gauge theories of gravitation based on different local symmetry groups [5-16].
In this review, mainly following Kibble’s approach, we demonstrate how gravitation can be
formulated from the gauge theoretical point of view.

The article is organized as follows. In Sect. 2, the Euler-Lagrange equations are obtained
by requiring invariance of the action integral under variation of coordinates. In Sect. 3,
the conservation laws of energy-momentum and angular momentum are obtained from the
vanishing variation of the Lagrangian density under global Poincaré transformations. In-
variance of the Lagrangian density under local Poincaré transformations is considered in
Sect. 4, where it is found that invariance is preserved provided one introduces gauge fields
with components e,,' and Fgﬂ, where the former is interpreted as tetrads (which set the local
coordinate frame) and the latter as local affine connections defined with respect to the tetrad
frame. In Sect. 5, with the aid of tetrads and local affine connections, the scheme for manip-
ulating vectors and spinor valued fields is developed. The explicit form of the curvature and
torsion of the underlying spacetime manifold is obtained in Sect. 6. In Sect. 7, the equation
of motion for the spinor as well as the field equations for gravity is derived using a standard
variational calculus. Our conclusions are presented in Sect. 8.

Before proceeding to the main discussion, we introduce the notation to be used through-
out the article. The metric in Minkowskian spacetime M, is denoted by n;; = ¢; - ¢;
(i, j=0,1,2,3) with ngo = —n11 = —n22 = —n33 = 1 and nij = 0 for i # j. The ortho-
normal (Lorentz) basis vectors e; are defined by ¢; := 9; = % The metric of curved space-
time is given by g, =e, -e, (u,v=0, 1, 2, 3), where ¢, = e(;' (x)e;. The quantities e; (x)
are called tetrads. The tetrads are coefficients of the dual (1-form) basis non-holonomic co-
vectors 94 (x) = e”V (x)dx” . The inverse of ¢;* is denoted by ¢ . and satisfies the following
orthogonality relations

i v v i i
e e’ =36,", e et =48 (€))

The tetrads constitute transformation matrices that map from local Lorentz (with non-
holonomic coordinates x¢) to world (with holonomic coordinates x*) bases, i.e., v* = ef‘vi
with v = v"‘efx. The components e, (x) and ¢;%(x) transform as covariant and contravariant
vectors (under the Poincaré group) of the frame x*, if and only if the rotations 9, e} vanish
at all points (the square brackets denote anti-symmetrization). The equations 8[,Leu" =0 are
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the so-called integrability conditions [4]. If the integrability conditions are satisfied, then the
tetrad takes the form e (x) = 8x'/dx*. The metrics 7;; and g,z are related via

guw=e¢, e = eL(x)ei el(x)e; = eL(x)e{ (x)e; -e; = EL(X)E{(X)VIU- 2)

2 Invariance Principle

As is well-known, field equations and conservation laws of a given theory can be obtained
from the principle of least action. The same principle is the basis of gauge theories. Thus, we
begin with the principle of the least action and Noether’s theorem. Let x (x) be a multiplet
field defined at a spacetime point x and let £{x (x), d; x (x); x} be the Lagrangian density of
the system. The action integral I of the system over a spacetime 4-volume €2 is defined by

1<Q>=/L{x<x>,ajx<x>;x}d4x. 3)

Now we consider the infinitesimal variations of the coordinates
x> x'=x" 4 8x', 4)
and the field variables

X)) = x' () = x () +5x(x). &)

Correspondingly, the variation of the action integral is given by
8l = / L£(xd*x' — / L(x)d*x = / [£'DI0;x"7 )| — L(x)]d*x. (6)
o4 Q Q
Since the Jacobian for the infinitesimal variation of coordinates becomes
18;x7 1 =14 8;(8x7), ™

the variation of the action takes the form,
81 :/[8£(x)+£(x)8j(8xj)]d4x ®)
Q

where
SL(x)=L'(x") — L(x). )

For any function ®(x) of x, it is convenient to define the fixed point variation &y by,
8@ (x) =D (x) — P(x) =D'(x) — D(x'). (10)
Expanding the function to first order in 8x/ as
O(x') = D(x) +8x/ 9; P (x), (11
we obtain

$P(x) =D (x) — D(x) = D' (&) — P(x) + D(x') — D(x) = §P(x) +8x7 3; P (x), (12)
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or equivalently,
8o®(x) = 8D (x) — 8x7; D (x). (13)

An advantage of having the fixed point variation is that 6, commutes with 9;:

800; P (x) = 9;8, D (x). (14)
For @ (x) = x (x), we have
8x (x) = Sox (x) +8x"0; x (x), 15)
and
89 x (x) = 3 (8o x (x)) — 9;(8x7)d; x (x). (16)

Use of the fixed point variation in the integrand of (8) gives
81 =/ [80£(x) +3;(8x7 L(x))] d’x. 17
Q

If we require the action integral defined over any arbitrary region €2 to be invariant, that is,
81 =0, then we must have

8L+ L£3;(8x7) = 8L + 9;(L8x7) = 0. (18)

If 3;(8x7) = 0, then § £ = 0 so that the Lagrangian density £ is invariant. In general however,
d;(8x7) # 0, and £ transforms like a scalar density. In other words, £ is a Lagrangian density
unless 8;(8x/) = 0.

For convenience, let us introduce a function #(x) that behaves like a scalar density,
namely

8h(x)+h(x)8j(8x-f) =0. 19)

We further let £(x (x), 9; x(x); x) = h(x)L(x(x), 9; x (x); x) where the function L(x (x),
0; x (x); x) is the scalar Lagrangian of the system. Then we see that

8L+ L£3;(8x7) = h(x)SL. (20)
Hence, the action integral remains invariant provided
SL=0. 1)

Let us calculate the integrand of (17) explicitly. The fixed point variation of L£(x) is a
consequence of a fixed point variation of the field x (x),

0L L
SoL=——3§ + ——§0(9; 22
0 (D) ox (x) 50,000 0(9; x (X)) (22)
which can be cast into the form,
SoL =1[L],6 ()+8-<L8 ()) (23)
0~ — x00X (X J 8(8Jx(x)) oX (X
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where
oL oL
(], = - 8j< ) 24)
dx(x) (3 x (x))
Consequently, we have the action integral in the form
81 = / {[[,]X(Sox(x) +9; (Léx(x) -7/ 5xk> }d4x, (25)
Q (3 x (x))
where
oL

Tkj =

(3 x (x))
is the canonical energy-momentum tensor density. If the variations are chosen in such a way
that §x/ = 0 over Q and §yx = 0 on the boundary of €2, then § = 0 gives us the Euler-

Lagrange equation,

oL oL

[£], = —8j( ) =0. (27)
dx (x) (9 x (x))

On the other hand, if the field variables obey the Euler-Lagrange equation, [£], = 0, then
we have

x(x) =8 L (26)

oL A

which gives rise to conservation laws.

3 Global Poincaré Invariance

Recall our assertion that our spacetime in the absence of gravitation is Minkowski space-
time M,. The isometry group of M, is the group of Poincaré transformation (PT) which
consists of the Lorentz group SO(3, 1) and the group of translations 7' (3, 1). The Poincaré
transformation of coordinates is given by

x'—=>x"=a x4V, (29)
where aj. and b’ are real constants and al} satisfy the orthogonality conditions a,ia’; = 5’/ For
infinitesimal variations,

Sx'' =g jx/ +¢ (30)
where ¢;; 4 €;; = 0. While the Lorentz transformation (LT) forms a six parameter group, the
Poincaré group has ten parameters. The Lie algebra for the ten generators of the Poincaré
group is given by

[Eij» Eul = nix Eji +nj1 ix — njx Bir — Mit Ejs
€1y}
[Eij, Tkl = 0 T; — nik T}, [T;,T;]1=0,
where E;; are the generators of Lorentz transformations, and 7; are the generators of

four-dimensional translations. Obviously, 9;(5x’) = 0 for the Poincaré transformation (29).
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Therefore, our Lagrangian density £, which is the same as L with 4(x) = 1 in this case, is
invariant; that is to say, £ = 8L = 0 for §1 =0.
Suppose that the field x (x) transforms under infinitesimal Poincaré transformation as

1 ..
Sx(x) = 58"’51'/)(()6), (32)

where the tensors S;; are generators of the Lorentz group in some appropriate representation,
satisfying

Sij =—=Sji, [Sij, Skl =ik Sji +nj1 Six — njx Sit — ni Sjx- (33)

Correspondingly, the derivative of x (x) transforms as

1 .. .
3k x (x)) = 58’-’S;j8kx(x) — &' 10 x (x). (34)

Since the choice of infinitesimal parameters &' and &/ is arbitrary, the vanishing variation
of the Lagrangian density invariant §£ = 0 leads to the following identities,

Sijx(x) + (8ij Ok x (%) + i 0 x (x) — i 0; x (x)) = 0. (35)

L 9L
ax (x) (3 x (x))

We also obtain the following conservation laws

a,-ka=0, O (S¥ij —xiTH j+x,T%;) =0, (36)
where
SkA_.__LS“ x) (37)
S TS s

and Tkj was defined in (26). These conservation laws imply that the energy-momentum Py
and angular momentum J;;, respectively

Pk:/Tk°d3x, J,-,-:/[S",-, — (T —x;T° )] dx, (38)

are conserved. The system exhibiting invariance under the ten parameter symmetry group
has ten conserved quantities. This is an example of Noether’s theorem. The first term S°;; of
the angular momentum integral corresponds to the spin angular momentum while the sec-
ond term gives the orbital angular momentum. The global Poincaré invariance of a system
defined over spacetime implies the latter is homogeneous (all spacetime points are equiva-
lent) as dictated by translational invariance and is isotropic (all directions about a spacetime
point are equivalent) as indicated by Lorentz invariance. It is interesting to observe that the
fixed point variation of the field variables x (x) takes the form

1 . .
Box (¥) = 787 k8" x () + &/ Tj x (x), 39)
with 8¢ =n'*E;, where
E_,»k=Sjk+8(xj8k—xk3j), Tj=—8j. (40)

We remark that E; k¥ are the generators of the Lorentz transformation and T; are those of the
translations.
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4 Local Poincaré Invariance

In this section we consider a modification of the infinitesimal Poincaré transformation (30)
by assuming that the parameters ] and &/ are functions of spacetime coordinates. We write
the spacetime dependant infinitesimal Poincaré transformation as

SxM =¢l (x)x" + e (x) =E*(x), 41)

which we call a local Poincaré transformation (or the general coordinate transformation). To
make a distinction between global (with holonomic coordinates) and local transformations
(with non-holonomic coordinates), we use Greek indices (i, v =0, 1, 2, 3) for the former
and Latin indices (j, k =0, 1, 2, 3) for the latter. The variation of the field variables x (x)
defined at a point x is still the same as that of the global Poincaré transformation (32). The
corresponding fixed point variation of x (x) takes the form,

1 .
dox (x) = 58175”)(()6) —&"9,x (x). (42)

Differentiating both sides of (42) with respect to x* we obtain

1 . 1 .
809 x (x) = 58”&-;%){()6) + 5(3”8”) Sijx (x) = 8, (6" (x)dy x (x)). (43)

Use of these variations leads to the variation of the Lagrangian L,
1 .
8L+ 0,(8x")L=h(x)8L =60L + 9,(Lx") = _5(3“8”) St — (0.8 ()) TS (44)

which is no longer zero unless the parameters £/ and £”(x) become constants. Accordingly,
the action integral for the given Lagrangian density £ is not invariant under local Poincaré
transformation. We notice that while 9; (8x7) = 0 for the local Poincaré transformation,
0,&"(x) does not vanish under local Poincaré transformations. Hence, as expected L is
not a Lagrangian scalar but a Lagrangian density. As mentioned earlier, for defining the
Lagrangian L we have to select an appropriate non-trivial scalar function A (x) satisfying

Sh(x) + h(x)d,&" (x) =0. 45)

Now we consider a minimal modification of the Lagrangian so as to make the action
integral invariant under the local Poincaré transformation. It is rather obvious that if there is
a covariant derivative Vj x (x) which transforms as

1 .. .
3(Vix(x)) = 58’-’5,-,-ka(x) — &' Vix(x), (46)

then a modified Lagrangian L’ (x (x), dx x (x), x) = L(x (x), Vi x (x), x), obtained by replac-
ing d;x (x) in L(x(x), dxx(x), x) by Vix(x), remains invariant under the local Poincaré
transformation, that is

’ !

SL = oL ) (x)—{—ai
T ox@ Y T a(Vix ()

8(Vix(x)) =0. (47)
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To find such a k-covariant derivative, we introduce the gauge fields AV , = —A/" | and
define the p-covariant derivative

1.
V;LX(X) = 8MX(X)+ EAl]uSin(x)’ (48)
in such a way that the covariant derivative transforms as
1 ij v
SoVux (x) = ¢ Sij Vix (x) = 8,(87(x)Vy x (x)). (49)

The transformation properties of A « are determined by V, x (x) and 8V, x (x). Making
use of

1 ij 1 ij v 1 ij
SVux(x) = Eaﬂ (¢ )Sijx(x)+§e Sij0x (%) — (3,£"(x)) 8, x (x) + EM S X (x)
1.
+ ZA’/HSijé‘kl St x (x) (50)
and comparing with (48) we obtain,
SAY S x (x) + 9 () Sijx (x) + 3 (AY, " — &AM ) S Sux (x)
+ (3,8"(x)) AY, S x (x) = 0. (51)

Using the antisymmetry in ij and k/ to rewrite the term in parenthesis on the right hand
side (RHS) of (51) as [S;;, Su]1AY,&" x, we see the explicit appearance of the commutator
[Sij, Sul. Using the expression for the commutator of Lie algebra generators

1
[Sij» Skl] = Ec[ef][ij][kl]sef» (52)

where c'/1}; ;) (the square brackets denote anti-symmetrization) is the structure constants
of the Lorentz group (deduced below), we have

1

[, Su] A%, = 3 (Alsel — Ael) 8, (53
Substitution of this equation and consideration of the antisymmetry of £.> = —g®. enables
us to write
SAY =" AN+ el A — (0,87 (x) AT, — 9,8V (54)
We require the k-derivative and p-derivative of x (x) to be linearly related as
Vix (x) = e " (x)Vy x (x), (55

where the coefficients e, *(x) are position-dependent and behave like a new set of field
variables. From (55) it is evident that V; x (x) varies as

SVix (x) =8¢, Vux(x)+ €, 8V, x (x). (56)
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Comparing (56) with §V x (x) = %E“bSakax (x) — s’IkV‘,-x (x) we obtain,

ek sef vV, x (x) — (8.8" (%)) Vux (x) + €6,V x (x) = 0. (57)

k 1

Exploiting 4 (e, e, ) = 0 we find the quantity e, * transforms according to

Ser ! = e ",E" (x) — ety (58)

It is also important to recognize that the inverse of det(e; *) transforms like a scalar den-
sity as h(x) does. For our minimal modification of the Lagrangian density, we utilize this
available quantity for the scalar density /; namely, we let

h(x) := [det(e, ")]™". (59)

By replacing the Lagrangian density £(x (x), dxx (x), x), which is invariant under global
Poincaré transformation, by the Lagrangian density

LOx(x), 0 x (x); x) = h(x)L(x (x), Vix (x)), (60)

the action integral remains invariant under the local Poincaré transformation. We remark that
in the limiting case when we consider Poincaré transformations which are not spacetime
dependant, e, * — 8} so that h(x) — 1. Since the local Poincaré transformation §x/ =
&H(x) is nothing but a generalized coordinate transformation, the newly introduced gauge
fields e} and A", can be interpreted, respectively, as the tetrad (vierbein) fields which set
the local coordinate frame and as a local affine connection with respect to the tetrad frame.

5 Spinors and Vectors

‘We may readily define tensors (and vectors) and various algebraic operations with tensors at
a given point in the spacetime manifold. Comparison of tensors at different points however,
requires use of the affine connection via the process of parallel transport. Introduction of
spinors require use of tetrads. In analogy with the case of vectors, comparison of bilinear
forms—constructed from spinors and their conjugates—at different spacetime points require
use of the spin connection. First, consider the case where the multiplet field x (x) is the Dirac
field v (x) which behaves like a four-component spinor under LTs and transforms as

V() = P (@) =Sy (x), (61)

where S(A) is an irreducible unitary representation of the Lorentz group. Since the bilinear
form v* = iyry*yr is a vector (where i € C), it transforms according to

v = Ak, (62)

where Aji is a LT matrix satisfying A;; + A ;; = 0. Invariance of v’ (or covariance of the
Dirac equation) under the transformation v (x) — v'(x’) leads to

ST MY S(A) = ATy, (63)
where the quantities y* are the Dirac y-matrices satisfying the anti-commutator relation,

vivi+vivi=nyl, 1,j=0,...,3. (64)
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Furthermore, we notice that the y-matrices satisfy the following properties:

)" = =0, @O?=)’=-1,  yp=-y" and yy'=1
W' =, N?’=mw)?*=1 *k=1,2,3) and y =y* (65)
v i=y0yly3i ) =—ys, (5)P=-1 and ¥ =ys.

The dagger operator (1) implements the complex conjugation of the transpose of the quantity
appearing to its left. We assume the transformation S(A) can be put into the form S(A) =
e™i7" | Expanding S(A) about the identity, retaining terms to first order in infinitesimals
and expanding A;; to first order in &;;,

Aij =6ij +eij, gij+e;=0 (66)
we get
S(A) =1+ %5’7 Vi ©67)
To determine the form of y;; we substitute (66) and (67) into (63) to obtain

1 y -
e [v?s y ] =n"ejiy’. (68)

Rewriting the RHS of (68) using the antisymmetry of ¢;; as

R
n"esiy! = ey (n"y) —n"y'), (69)

yields
[V . y"]=n"y! —nMy". (70)

Assuming the solution to have the form of an antisymmetric product of two matrices, we
obtain the solution

. 1 . .
yV = E[V', y'] (71)

If x (x) =¥ (x), the group generator S;; appearing in (33) is identified with

1
Sii=vy;= E(Viyj —Yivi)- (72)
To be explicit, the Dirac field transforms under LT as
1.
Y (x) = Egjyiﬂ/f(x)- (73)
The Pauli conjugate of the Dirac field is denoted ¥ (x) and defined by

Y () =iy () . (74)

The conjugate field ¥ (x) transforms under LTs as,
- - 1 i
510()6):—1#()6)58 Yij- (75)
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Under local LTs, ¢,;, becomes a function of spacetime &, — €45 (x). Now unlike 9,4 (x),
the derivative of ¥’(x") is no longer homogenous due to the occurrence of the term
y“b[aﬂeab(x)]llf(x) in 9,v¥’(x"), which is non-vanishing unless €,,(x) is constant. When
going from locally flat to curved spacetime we must generalize 9, to the covariant deriv-
ative D, to compensate for this extra term, allowing to gauge the group of LTs. Thus, by
use of D, we can preserve the invariance of the Lagrangian for arbitrary local LTs at each
spacetime point

D' (x') = S(A(X) Dy (x). (76)

To determine the explicit form of the connection belonging to D,,, we study the derivative
of S(A(x)). The transformation S(A(x)) is given by

1
S(A(x) =1+ Esubmy“b. (77)

Since €4, (x) is only a function of spacetime for local Lorentz coordinates, we express this
infinitesimal LT in terms of general coordinates only by shifting all spacetime dependence
of the local coordinates into tetrad fields as
£ap(X) = e, (X)€", (X)&3. (78)
Substituting this expression for ¢,,(x), we obtain
duap(x) =9, [, (x)e", (X)Er] - (79)
However, since ¢;,, has no spacetime dependence, this reduces to
duEap(X) = e, (X)yuep (x) — €, (X)dpiean (X), (80)
enabling us to write
9 S(Ax)) = —%V”bausab(x} (81)

According to (48), the covariant derivative of a Dirac spinor (and its conjugate) is given by
an equation of form

1 . - - 1- .
Dy (x) = 8,9 (x) + Ew"’uyijlﬂ(X) and Dy (x) = 0,9 (x) — Ew(x)w”uyi_h (82)

respectively, where w”/ , are the components of the spin-connection. Using the covariant
derivatives of ¢ (x) and v (x), we can show that

Dyvj = 8,0 — &' jv;. (83)

The same covariant derivative should be used for any covariant vector v, under LTs. Since
V. (v;v') = 9, (v;v'), the covariant derivative for a contravariant vector v' must be

Duv" = Bﬂv" +of juvj. (84)

Since the tetrad e; ** is a covariant vector under LTs, its covariant derivative must transform
according to the same rule.
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Under local LTs, the covariant derivative itself should transform as a scalar since it does
not carry a Lorentz (Latin) index. Thus D, v = D;v" = A’ D, v/ where A’ := g}% Mak-
ing use of the equation for D, v’ ,DLU” and using 9,1, = 0 (since the Minkowski metric is
constant) to write A" ;1 8MAbk =AJ 40, A jp, we obtain the transformation property of the
spin connection

o, = 0 = A AT — (3, A7) AP (85)

Parallel transport is a unique geometric operation that is independent of the choice of
frame. We emphasize that there is only one linear connection. It may be expressed in either
holonomic or non-holonomic frames of reference. As will be shown, these two representa-
tions of the linear connection are related by (89). Moreover, the linear connection (expressed
in either reference frame) is not a priori torsion free. Indeed, it will be shown that the linear
connection does contain torsion, the latter being defined by (124).

The relative rotation of a coordinate (holonomic) basis vector e, is given by dx*(dyex” +
T, ef)e, = dx*(VaerP)ege; with the affine connection I'? = ¢/ (x)Dye’, (x) =
—eHi (x)Dvepi (x)defining the covariant derivative operator V, := 9, + ng 8py. The ma-
trices Eug = —Ep, are generators of the Lorentz group satisfying the Lie algebra (31).
To make the transition to curved spacetime, we take account of the general coordinates of
objects that are covariant under local Poincaré transformations. The covariant derivative
of a quantity v* (v;) which behaves like a contravariant (covariant) vector under the local
Poincaré transformations is given by

v, vt = 9,0 + T wv? and Vv, =0d,v, — r* 1oV, (86)
respectively. The covariant derivative for a mixed tensor A ! is given by,
VuA=0,A}+T" A7 —T7 Al (87)

Since the basis vectors (in either holonomic or non-holonomic frames) change from one
point in the spacetime manifold to another, the derivative of a vector must be given by
[17]1 3,v = 8, (v'e;) = (8, v )e; + v (3 €;) = (D, v')e;. This implies that 3,.e; = w';, e For
similar reasons, we conclude d,e, =T, w€p- Thus, if we perform a transformation on (85)
which leads from a non-holonomic to a holonomic frame, then we find [17, 18]

dye’ (x) — o ive,ﬁ +1* wei” = D,e* (x) =0,
, A A . (88)

avel //,(-x) + o' kvek n FA /wel r= Due' /A('x) - 07
since d,ej, = du(ej-e,) = e -e,+T% ej-e, = e +T7, ej,. The operator D,
defined in (88) is introduced for later convenience. From (88) we can deduce a relation

that allows to compute the affine connection in terms of the spin connection (and tetrad) or
vice-versa, namely [17],

e ,=e; (Bﬂebv (x) — o Hea,,). (89)

To determine the transformation properties of (89), we consider the LT of the quantity
e "Bﬂebu(x) which is given by

ey’ e’ (x) — [eb“aﬂebu(x)]’ = A;eprﬁaﬂ (Aﬁeh)‘(x))

= AJABg AL + ATAP ALe, e’ (x), (90)
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where A%, = 0% is a holonomic transformation matrix. By use of (85) and (89), we obtain

T oxn
the following transformation law

Ty = T = A% A AT g 4+ A% A A, o1

where Ay, = 0,0,x".
The linear connection may be decomposed into its symmetric and anti-symmetric com-

1 o __ ™ o o - o — - o [ 1
ponents according to I') =17 + 77, , where ', =1"° ~and 77 is the torsion tensor

defined as the asymmetric part of the affine connection,
Ty :=T%g, —T%p. (92)

Recalling (2) and using (88), we may derive the so-called metricity condition V, g,, =
D3 guv = Dile,' (x)e,’ (x)n;;) = 0. By use of the metricity condition and the symmetry of
lo“‘jw in ;v we can write,

lo"ﬁv + le'fﬂ =—ejef [(8ﬂeyb(x)) e’ + (0.7.(x)) eyb]. (93)
We know however, that
O [€), (D) erc(x)] = erc(x)0,%, (x) + €35 (x)0pe”.(x) + €, (X)e".(x)Dyu8p.  (94)
Letting A — v and exchanging b and ¢, we obtain
e [€(D)eve(x)] = —e, (x)e".(x) 3, 8. (95)
so that,

f‘ukv + f‘u,v)» = au.gv)w (96)

By cyclic permutation of indices in (96), we obtain the Christoffel connection coefficient of
a Riemannian manifold,

5 1
Ffm = nga (aKgPlL +0o8uc — aﬂgkp)' o7
For completeness we determine the transformation law of the Christoffel connection. Mak-
ing use of Ffwex = 3d,e,, where

duey = A% AP 0,e5 + A%, (0,A%) ep, (98)

we can show that

fwk

= D =AY A AT A ASAR (99)

In light of the above considerations, we may regard infinitesimal local gauge transfor-
mations as local rotations of basis vectors belonging to the tangent space [13, 19] of the
manifold. For this reason, given a local frame on a tangent plane to the point x on the base
manifold, we can obtain all other frames on the same tangent plane by means of local rota-
tions of the original basis vectors. Reversing this argument, we observe that by knowing all
frames residing in the horizontal tangent space to a point x on the base manifold enables us
to deduce the corresponding gauge group of symmetry transformations.
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6 Curvature and Torsion

The parallel transport of a vector around an infinitesimal closed path is proportional to the
curvature of the manifold and can be obtained from the commutator [D,,, D, ]y (x) [20]. By
direct computation we find the second order covariant derivative

1 .
Dy Dy (x) = 0,9, Y (X) + 5 Sca [V ()3, + @, 0,9 (x)] + T, Dy (x)

1 1 .
+ Ese_,wff AP (x) + Zsefsgdwff Y (x). (100)

Using (100) and a similar expression with p and v interchanged and noting that partial
derivatives commute, we find

1
[Dp.» Du] 1//()() = ESCd [(audeV. - L )1/f(x)]

+ %Sefscd[(wffvwcd — o ) Y (). (101)

Relabeling running indices we can write,

1

ZSefSCd (wefvwai —w fp,w ) Y(x) = [Scdv Sef] wef//_deUW(x)- (102)

Using {Va, ¥»} = 214 to obtain
{Var Vo) VeYa = 2NabVeVas (103)

we find the commutator of S, is given by

[Seas S = L eesgst — nuses 8485 — naps2sl] s, 104
cd>» ef]— B [nce d0f — NdeO, f+770f e 04 — Ndf9, C] ab - ( )

It is clear that the term in brackets on the RHS of (104) is antisymmetric in c¢d and ef and is
also antisymmetric under exchange of pairs of indices cd and ef . Since S,;, is antisymmetric
in ab, so too must be the terms in brackets, so that the commutator does not vanish. Hence,
the term in brackets is totally antisymmetric under interchange of indices ab, cd and ef and
exchange of these pairs of indices. We identify this quantity as the structure constant [21] of
the Lorentz group

(168585 — 14e8¢ 87 4 nep828g — 0as8e8.] = creanen'” = “eares,  (105)
with the aid of which we can write

1

7 [Sea> Ses ], i w(x)—— b [0 00 — 0 0,0 | Y (). (106)

Combining these results, the commutator [D,,, D, ]y (x) gives

1 .
[Dy, D]y (x) = _ERU o Sij ¥ (x), (107)

where

i — i ai ik o ik
R' =00, 8Ma)]v+a)kvu)m ', (108)
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Using the Jacobi identities for the commutator of covariant derivatives, it follows that the
curvature R’ ;,,, the Bianchi identity

DARi Jjuv + DMRi Jjo + DuRi japu = 0. (109)
Permuting indices, this can be put into the cyclic form
PP’ DyRY =0, (110)

where %77 is the Levi-Civita alternating symbol. Furthermore, it can be shown that
RV, =n’ kR kv 18 antisymmetric with respect to both pairs of indices,

RV, =-R'",, =R', =—R7,,. (111)
This condition is known as the first curvature tensor identity.
To determine the analogue of [D,, D,]¥(x) in local coordinates we depart from
Dy (x) = e"y D, (x). From Dy (x) we obtain,
DDy (x) = €' [ Dye"c (x) | D (x) + €” 1"k Dy Dy (x). (112)
Permuting indices and recognizing
euaDveuk(x)=_ekuDveau(x)7 (113)
(which follows from D, (e ;) = 0) which leads to,
evl [Dveﬂk(x)] D/LI/f(x) - eﬂk [Due”l(x)] DVW(X)
= (e"1e"y — e*re")) [Dye, (X)] D (x). (114)
Defining
CYy = (e"re’) — e1e"y) Dye,” (x), (115)

the commutator of the k-covariant derivatives takes the final form [4]
1 .. )
[Dy, Di]¢r(x) = _ER” wSij ¥ (x) + C' yuDir (x). (116)

The central charge R"/;; and structure functions C' jk of the deformed algebra (116) are
given (in non-holonomic coordinates) by the first Cartan structure equations

RYy(w) :=el'e/RY ,,, C'ju=(e"je'x —e"re”;) Dye,' (x). (117)

With (97) and (108) in hand, the quantity Rki i in (117) can be expressed in terms of its

torsion-free Rkl ;1 and torsion dependant contributions as [20]
Rkijl =cle, (Roi/x + 2%[./' TSy + 2T T|i]f)’ (118)

where %MA“ = 0,A% + fﬁﬂAﬁ, %HAO, =0, A0 — Io‘ffaAﬁ, the square brackets in Tl(;lﬂr\ilf
represents anti-symmetrization with respect to ij, 8 being fixed. As was done for R’ j,,

@ Springer



Int J Theor Phys (2009) 48: 34263448 3441

using the Jacobi identities for the commutator of covariant derivatives, we find the Bianchi
identity in Einstein-Cartan spacetime [22],

eI D RY =7 Cy "R (119)

It is interesting to observe the similarity in structure of the curvature tensors in (129)
and the first equation in (117). Indeed, there is only one curvature tensor since these
two quantities can be transformed into each other via appropriate tetrad index saturation,
R (w) =é}efefe} RY, , (I'). We can therefore view R®,, (') in (129) and R, (w) in (117)
as holonomic and non-holonomic representations, respectively, of the same spacetime cur-
vature.

The second curvature identity

Rk[p(rk] =2Dy, Cox]k - 4C[p(7bCA]bk (120)

leads to,
e DC K =P R, elp. (121)

Notice that if I'*, | = ¢;*(x) Dye’,(x) = —e,' (x) D, €*;(x), then

v

I, — T4 =e[Dye,(x) — Dye' ,(x)]. (122)

o v

Contracting (122) with e} ’e}, we obtain [4]

Cly=¢el'e’e (T, — T ). (123)

v s

We therefore conclude that C¢, is related to the antisymmetric part of the affine connection

I =enee]C =T, (124)

which is interpreted as spacetime torsion T?w. Equation (124) establishes a means to trans-
form between the holonomic torsion tensor 7%, in (92) and the non-holonomic structure
functions C;k in (117) (and vice-versa) in terms of appropriate tetrad index saturation. This
situation is entirely analogous to the transformation from Rijkl (w) to R"‘V 5. (1) (and vice-
versa) via tetrad index saturation. From (115), the torsion tensor can be viewed as a sort
of field strength associated with the tetrad coefficients that describes a twist of the tetrad
under parallel transport (relative to a given basis) that is independent of the effect of cur-
vature (i.e., a twist in a plane perpendicular to the plane of parallel transport). This is to be
compared with the interpretation of torsion as the asymmetric part of the affine connection.
Equation (124) can be solved with the aid of the metricity condition for the spin connection,
yielding [23]

Wapy = % (Qeab + Rpea — Labe) €, + Tabys (125)

where
Qeap 1= ey [€",0,€" (x) — €'9,e”, (0)], (126)
are the so-called objects of non-holonomicity. If the integrability conditions 8[aeﬁ]i =0

are not satisfied, the reference frame formed by e;# and ¢,’ is said to be non-holonomic.
The objects of non-holonomicity measures the non-commutativity of the tetrad basis [18].
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The quantities 7, are related to the spacetime torsion tensor Tgg, according to Typ, :=
o IBT

€a” €y Lopp-
The most general connection in the Poincaré gauge approach to gravitation is given by

Aabu = 6?)abu - Kabu + FX vueakebuv (127)
where @, == % (Q2cap + Sea — Labe) €, is the torsion-free spin connection and
Kape :=—(T" vy =T, + T %) eares’ e (128)

is the contortion tensor. Now, the quantity R, , = e’ R’ 5, (expressed in holonomic coor-
dinates) may be written as

R gy =0,17,, — 0,T" +T7,,I" 5, =T, (129)

Therefore, we can regard R’ ,,,, as the curvature tensor with respect the affine connection
)\. S . . . S _ ©.
I'* v We remark that R%, ,, in (118) is given by R°, ; = R, ,, (I' = I'). For completeness,

we note that the Ricci tensor R, = R 3 takes the form

Ry =R+ Vol S =V, T2 + T, 8T —T2T,F, (130)

A
where the torsion-free contribution R,,; is defined as,

Ry =0,17, — 8,17, + 17 17 — 17,18 (131)

iy nvt yn

It is not difficult to show that
V=g =Idete' ;] =[dete;*]7", (132)

where g := det g,,,. Hence we may take ,/—g for the density function 4 (x).

7 Field Equations for Gravitation

The scalar curvature R is obtained from the generalized Ricci tensor (130) as follows,
R=R",=R+ 8K —T"K,°* (133)

where R denotes the usual Ricci scalar of general relativity. Using this scalar curvature
R, we choose the Lagrangian density for free Einstein-Cartan gravity with cosmological
constant

1 . _
V=g(R+ 8K —T,K,* —2A), (134)

Lo=—
ST 2k

where kg = 8’;—46 is a gravitational coupling constant, and A is the cosmological constant.

Observe that the second term is a total divergence and may be ignored. The field equation
can be obtained from the total action,

S = / {Loea(x (), Bux (), e, AT ) + L} dx, (135)
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where the Lagrangian density for a fermion field y(x) in curved spacetime [24, 25] with
torsion is given by

1,- _
Liela = E[W“Daw(x) — (Do () ¥ ]. (136)

Modifying the connection to include spin connection and contortion contributions, the gauge
covariant derivative for a spinor and adjoint spinor is then given by,

1

137)
Dy (x) = 0,9 (x) — w(x)[ 8o (07, — K%,.) y*"].
The variation of the field Lagrangian reads,
8Lsera =V (8y" Dy + y"8T,) ¥ (x). (138)

The field Lagrangian defined in Einstein-Cartan spacetime can be written [18, 22, 23,
26, 27] explicitly in terms of its Lorentzian and contortion components as

Lo - h
ﬁﬁe1d=§[(Dm/f(x)) Y'Y = Uy Dy (0] — — Kuap¥ (v, v}, (139)

with Dy (x) := 0¥ () — §ijy 9 (x) and Dy (x) := 3, (x) + [ (X)@aij "/ Using
the following relations

1 - 1 - 1 -
— 7 Kuep¥r {y", v}y = —Kuaﬁxlfyﬂ"‘y“w - ZKuaﬁlﬁV“VaﬁW,
VY Y eume = {7 ¥} o = 3o vs, (140)
{yroyy =iy,
we obtain
Kot {1 7} = 52 Kuass™ (Fys7). (141
We define the contortion axial vector
Ky = e K, (142)
3!
Multiplying through by the axial current j> = ¥ ysy, ¥ we obtain,
(Fysyth) PP K s = —6ijO K. (143)

The interaction between the Dirac field and torsion has been reduced to a coupling of the
fermion axial current to a torsion axial-vector K,. Thus, the field Lagrangian density in
curved spacetime with torsion [26] becomes

3ihc "

1y, o -
Liela = 5[(%‘#(}6)) Y'Y =9y D] + — Kuis - (144)
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The total action reads,

81:8/56«/_—gd4x+8/£ﬁeld«/_—gd4x:/(6£G+8£ﬁeld)«/——gd4x. (145)

In order to obtain the explicit form of the dynamical equations for the fermions we recall
that the Dirac y-matrices are covariantly constant,

Veve = v — Thyu + [v. T ] =0. (146)

The 4 x 4 matrices [, are real matrices used to induce similarity transformations on quan-
tities with spinor transformation properties [28], that is y; — ¥/ = I'~!y,T. Solving for I',
leads to,

A 1
I, = g[@m v =T vy (147)

Variation of f‘K gives 8f‘K = %[(8,(8)/,))/‘ — (OT'*,))yuy']. Since we require the anti-
commutator condition on the gamma matrices y,. ¥, + ¥»¥u = guv1 (Dirac algebra) to hold,
the variation of the metric yields,

28g" ={8y", v Y+ {y", 8"} (148)

One solution to (148) is §y’ = %y(,(Sy"”. With the aid of this result, we can write
(08y)yt = %8,( (y"8gv)y". Finally, exploiting the anti-symmetry in y,,, we obtain

80 = = 800810 — 8uodT,7 | 1" (149)

0| —

With the above variational relations, it is straightforward to show that the equation of motion
obtained from variation of the action with respect to v (x) is given by [18, 22],

3
YD (x) + gTan“‘V”V“]l/f(x) =0. (150)

It is interesting to observe that this generalized, curved spacetime Dirac equation can be
recasted into a nonlinear equation of the Heisenberg-Pauli type [22],

o 3 -
YDy (x) + 3 (Wy"ys¥) vuysy (x) = 0. (151)

The following calculations involving the metric tensor g,, and its determinant g =

det(g,.) are useful. Recall that gg"¥ = ag% and gg,, = —32%- Since
V-8 38
8v—g = 0g=——re, (152)
dg 2J-¢8
where 53% = gg"¥, we can write
68 =g8""0guv. (153)
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Upon substituting (153) into (152), we obtain §./—g = —giL\/iig"”. However, since

88" 88w = 888" = /—8/—8888"", we conclude &\/5—?‘” =./—88.,08"". Hence,

1
5«/—g:—§4/—ggﬂv5g’”. (154)

Writing the metric in terms of the tetrads g*’ = €'e”, we observe §./—g =

-1 —g(8elfe) +e,i8e™). By using 8" = 8(n'/e") ="/ 8e", we are able to deduce

2
5/—g = —«/—ge#"Se,-“. (155)

For the variation of the Ricci tensor R;, = ¢/*R,,, we have SR;, = e/ I%,w + eiuélz’w. In an
inertial frame the Ricci tensor reduces to I%,w =0, Fg W= o 10*5’“, so that

SRiy =8¢/ Ry + ¢/ (8,015, — 0501°7). (156)

The second term can be converted into a surface term, so it may be ignored. Collecting our
results, we have

8g"" = —8"8" 88 s

1 .
3v/=8 = =5/ =88ud8" = —/=ge, e/,

SRy = gpu(D;8T%, — D,ST™) + T, /8T |, 8Ri, =8¢/ Ry,

(157)

SR = R"58g,, + g (D81, — D81 ;) — T,5K, 0.
From the above results we obtain,

1 ) 5
L[ (R e r-eta Yo 2o,
6lg = —

J—=gd*x.  (158)
16

+ g (Dys1,, — D81,

The last term in the action can be converted into a surface term, so it may be ignored. Using
the four-current v* introduced earlier, the action for the matter fields read [28]

8 Inets = / [0/ (0)8y" D, () + § )y 88,9 (1) ][ —g d'x

1 Jvs a m po 1z Apo i
Eg Iﬁ(x)%(Dul/f(x))-i-T paTi _5,‘ TApJT de m
:/ J—gd*x.

+ = (g0 — g70") (84081, — 200 817,,)

0| —

(159)

Removing the derivatives of variations of the metric appearing in 6I'% , via partial integra-
tion, and equating to zero the coefficients of §g** and 677,, in the variation of the action
integral, we obtain

1 1 1 - o 1,
0= 16—7'[ (R;w - EguvR - g;wA> + <§1/f(X)VvD;ﬂﬁ(x) - ZDp,vv)

+DoT, + Typo T — 8o Tope T (160)
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and
Tyor = koTpor (161)

where kg = 8’:—40 Equation (160) has the form of Einstein equations
G — 8w =koZ,, (162)
where the Einstein tensor is given by its standard definition,

1
G =R, — EgMR (163)
and ¥, = 0, + T, is the generalized energy-momentum tensor. We identify ®,, as the
canonical energy-momentum tensor

oh — 9 Lfiela

L= ———— D, ¥ (x) — 8", Lsela, (164)
(Dpy(x))

while T, is the stress form of the non-Riemannian manifold. For the case of spinor fields
being considered here, the explicit form of the energy-momentum components [29] is (after
symmetrization of corresponding canonical source terms in the Einstein equation),

O = —(V ()Y Dy ¥ (¥) = Db () ¥ (1)) (165)
and by use of the second field equation (161), we determine
v = Do T, + Tipo 70" — v Trpa T, (166)

where rwj’ is the spin angular momentum [18, 22],

o O0Lfew

=Y . 167
W= S By Y (167

Explicitly, the spin angular momentum reads 7' =y !y Vpoly,

Although the gravitational field equation is similar in form to the Einstein field equation,
it differs from the original Einstein equations because the present curvature tensor, contain-
ing spacetime torsion is non-Riemannian. In particular, the Einstein tensor (163) has a non-
vanishing asymmetric component and is not divergenceless, i.e., D,G .« 7 0 as can readily
be verified by use of (119) and (163). Assuming the Euler-Lagrange equations for the matter
fields are satisfied, we obtain the following conservation laws for angular momentum and
energy-momentum

DVTiJ]} =e"ie" i T,
) (168)
e}l.kDVZUK = 221}[( Tk/w + TvinU/uw
8 Conclusion

In the present work, we have demonstrated how all the necessary ingredients for a the-
ory of gravitation can be obtained from a gauge theory of local Poincaré symmetry. Gauge
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fields were obtained by requiring invariance of the Lagrangian density under local Poincaré
transformations. The resulting Einstein-Cartan theory describes a spacetime endowed with
nonvanishing curvature and torsion. The lowest order gravitational action is one that is lin-
ear in the curvature scalar while being quadratic in torsion. Dirac spinors were introduced
as matter sources and it was found that they couple to gravity via the torsion stress form <,
as well as through the canonical energy-momentum X,,, tensor. The stress form contains a
torsion divergence term as well as a term similar to an external non-spinor source to gravity.
The field equations obtained from the action by means of standard variational calculus de-
scribe a nonlinear equation of the Heisenberg-Pauli type in the matter sector, a gravitational
field equation similar in form to the Einstein equation as well as a constraint equation relat-
ing torsion to the spin energy potential of matter. The Bianchi identities of Einstein-Cartan
theory differ from that of general relativity since the Riemann curvature tensor characteriz-
ing the non-Riemannian geometry does not exhibit the symmetry properties of the latter. In
the limit of vanishing torsion however, the Bianchi identities reduce to their usual form. The
conservation laws for angular momentum and energy-momentum were obtained. From the
former, it was found that the generalized energy-momentum tensor contains a nonvanishing
anti-symmetric component proportional to the divergence of the spin angular-momentum.
For the latter, it was found that the generalized energy-momentum tensor is divergenceless
only in the limit of vanishing torsion.
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